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1. INTRODUCTION

A central problem in developing effective smoke obscurants
for space applications is to maximimze volumetric extinction or
absorption at the wavelength of the incident electromagnetic
radiation. Yet this is a problem without a general solution.
There are an enormous number of different kinds of obscuring
particles: they may vary in composition, shape, and size. To
choose a combination of particles that will give the greatest
obscuration over the largest possible wavelength interval by
doing detailed calculations for all possible particles--even if
the necessary analytical tools were available--would be an
endless undertaking. MNevertheless, it is possible to make
recommendations based on very general considerations. One can
establish bounds not on extinction at any wavelength, but rather
extinction integrated over all wavelengths, by invoking sum
rules.

AIR FOTTE OFFICE 0F SCIENTTFIC RESEARCH { AFSC)
NITICE OF TRANSMITTAL TO DTIC

This technical report has been revieved and is

2. SUM RULES FOR EXTINCTION Approved for public release IAW AFR 190-12.
Distribution is unlimited,

MATTHEW J. KERPER
Chief, Technical Information Division

2.1 General Considerations

UALITY
INSPECTED

Sum rules follow from very general relations called
dispersion or Kramers-Kronig relations. Consider two
time-dependent physical quantities, which we may call the input
and the output; the corresponding Fourier transforms, which are
complex functions of frequency w , are denoted by xi(w) and

xo(w). If the relation between these two transforms is linear

» s~
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Xo(w) = R(w)Xi(w) ’

and causal (the output cannot preceded the input in time), then
the real and imaginary parts of the response function R(w) are
connected by integral relations (subject to restrictions on the
asymptotic behavior of R).

Although dispersion relations are important in elementary
particle physics (e.g., Goldberger, 1960) and some areas of
optics, particularly optical properties of solids (e.g., Stern,
1963), they have been largely ignored by workers in the field of
absorption and scattering of light by small particles. One
exception is the work of Purcell (1969), which has received
little attention. Box and McKellar (1978) derived an expression
for integrated extinction similar to Purcell's but from a
completely different point of view. Recently, Purcell's results
wer2 rederived and extended by McKellar, Box, and Bohren (1982),
and an alternative treatment was given by Bohren and Huffman
(1983, p. 116). This treatment is outlined below because it
will form the basis for further investigation.

Consider a single particle illuminated by a plane,
monochromatic wave of frequency u and wavenumber k propagating
ig-the z direction. At sufficiently large distances r from the
particle, the electric field Es scattered by it is transverse

and is given asymptotically by

eik(r - 2)

Eg v &——— EX . kr >> 1 (1)




where the incident field (polarized in the x direction)lgi is

Eéx and E = Eoexp(ikz - iwt). The vector scattering amplitude X

in the forward direction determines the extinction cross section

Cext through the optical theorem
c .. =3 Re(s(0)} (2)
ext = k2 '

where S(0) is the projection of the forward scattering amplitude
onto the direction of polarization of the incident beam.

Because the relation (1) is linear and causual (the
scattered wave cannot precede the incident wave in time), the
real and imaginary parts of S(0) are connected by integral
relations. However, the asymptotic behavior of S(0) is such
that it is not S(0) itself that satisifies these relations but
rather a suitable modification of it. For integral relations to
exist, S(0) must vanish in the limit of infinite frequency. But
it follows from Fraunhofer diffraction theory that for

sufficiently high frequencies

2

S(0) = 2G , (3)

4mc?
where ¢ is the speed of light in vacuo and G is the geometrical
cross sectional area projected onto the incident beam (for a

sphere of radius a, G = ma?). The function F formed from S

S(0) _ 2G
2

F(w) = (4)

w 4nc

A gy a B 0w
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vanishes in the limit of infinite frequency; if S(0) is analytic
in the top half of the complex frequency plane (this is required
by causality) and decreases at least as w? at low frequencies,

then F is also analytic, hence its real (F') and imaginary (F'')

parts are connected by the dispersion relations

- 00

F'(w) = 2 p| 28R 44, (5)
L Qz - wz
0 o0}
L}
F''(w) = - 22 p| B2 49 , (6)
m Q2 - wz
0
where P denotes the Cauchy principal value of the integrals.
If we now substitute (2) in (6), we obtain the dispersion
relation satisfied by the extinction cross section
“c ()
p|—2XL g0 = -2n%c? Im{sfq—l ’ (7)
QZ - wz w

o]

It is tempting to take the limit of (7) as the frequency goes to

zero and write

aQ = -2n%c?lim —=——>1= . (8)

lim P —Eiﬁﬁigl an = _Eszsifl = Im{S(0) }
Qz w=>0 (.02

Indeed, this is what has been done previously. But underlying

(8) are some implicit assumptions that we must now investigate.
2.2 Requirements on the behavior of Cext at low frequencies

Let us suppose that the limit of the right side of (7) as

........




the frequency goes to zero exists. This means that the limit of
the left side also exists, but it does not necessarily follow

that this limit is

The Cauchy principal value is also obtained as a limit, and the
order of limits cannot always be interchanged. Suppose, for
example, that Cext were a constant. Since Cext is inherently
positive, it follows that (9) diverges because the integral of
1/ Q% over any region containing the origin diverges. Thus, it
is clear that there must be restrictions on the low frequency
behavior of Cext in order for (8) to be valid. For simplicity,

let us assume that Cext is proportional to the frequency squared

at low frequencies. What we want to prove is that

c_(Q) “c __(Q)
lim p]—ﬁt—— aq = J-ﬁ‘i-— an . (10)

Q2 - w? R

0 o]

w0

From the definition of the Cauchy principal value, the left side

of (10) is

lim lim
w+o §-0

We can make w and § as small as we wish (but not zero) subject

to the requirement that w> 8. The upper limit of integration 8




7 Rl 0l N MR N

O L Al

can also be made as small as we wish subject to the requirement
that it is greater than w + §. If cext is proportional to the
frequency squared at sufficiently low frequencies, then we can
substitute the low frequency expression in the first two
integrals in (11). These integrals can now be evaluated, and
both limits taken. The result is (10). Thus, if Cext decreases
as the frequency squared in the limit of zero frequency, (8) is
valid. This requirement is more stringent than it need be. All

that is required is that at low frequencies C decrease as

ext
frequency to the power 1 + 0 , where 0 is any positive number.
At sufficiently low frequencies, the extinction cross
section of an ellipsoid composed of either a simple free
electron metal or a simple insulator is proportional to
frequency squared (see, e.g., Bohren and Huffman, 1983, pp. 345

and 348). Thus, the low frequency behavior of Cex for real

t
particles is such that (8) is valid.

It also follows from the preceding analysis that there do
not exist sum rules for the extinction cross section with any
form other than (9). For example, suppose we ingquire into the

existence of a sum rule for the quantity wcex The low

£
frequency limit of this quantity is such that we may interchange

the order of limits; that is,

ac  (Q) T Cco ()
lim p]____ex‘:— do = J L an.

w0 02 - w?
o o)

Now, however, Cext does not have the proper behaviour at high

frequencies; that is, wF does not vanish in the limit of




infinite frequency, which is required for the validity of the

- W -

integral relations (5) and (6). The same argument holds for any

gquantity of the form Wi where n is any number other than

ext’

' 0. Thus, we conclude that only one sum rule for Coxt exists. :

2.3 Sum rules when magnetic dipole terms are included

To proceed further we need to determine the limit on the
right side of (8), that is, we need to know the low-frequency
limit of the forward scattering amplitude. For particles
composed of an electrical insulator, this amplitude will be that
given by electrostatics, i.e., the electric dipole term in a
multipole expansion of the electromcanetic field scc.:.tered by )
the particle. But for metallic particles, it is not clear if
this choice is correct: at far infrared frequencies, the
magnetic dipole term can be equal to or even greater than the
electric dipole term. For this reason, the role of the magnetic ‘
dipole term in sum rules was investigated.
In order to apply Rayleigh theory (i.e., electrostatics) to
. scattering by small particles, two conditions must be satisfied:
the size parameter x = 2ma/) , where a is a characteristic
linear dimension of the particle, must be small compared with
unity as must |m|x, where m is the particle's complex refractive
3 index. Let us consider a simple free-electron metal, the

: dielectric function of which is given by the Drude formula

e = ¢ +ig”" " =1 - — B (12)
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where upis the plasma frequency (typically in the ultraviolet)
and Y is a damping factor, which also has the dimensions of
frequency. The refractive index is the square root of = . The

size parameter X can be written as

(13)

Q

from which it is clear that x vanishes in the limit of zero
frequency. But since |m| does not vanish in this limit for a
material described by (12), it is not obvious that Im|x does.

The modulus of the refractive index is
lm| = (72 + e"z)% . (14)

For frequencies w much less than vy , and subject to the

requirement that v<« wp, we can combine (12)-(14) to obtain
w a -
Imix = 2= Yw/y W <Y <Cw (15)

Thus, provided that vy is not identically zero, Im|x also vanishes
in the limit of zero frequency. This condition on y is
equivalent to requiring the dc conductivity w;/y to be finite.

To proceed further, we must consider a specific particle.
The forward scattering amplitude for a sphere is an infinite

series in the scattering coefficients a, and bn:

S(0) = %I(2n + 1)(an + bn) (16)




For sufficiently small x and |m|x, the electric dipole term a

1
and the magnetic dipole term bl dominate the series (16) and are

given approximately by

1 3 % ¥ 2 b, = ~izg (¢ - 1) (17)

If vy is not identically zero, then for a material with

dielectric function (12)

tgg b;/a; =0 (18)
On physical grounds, we expect (18) to be valid for particles of
arbitrary shape. Thus, we have established that the sum rule
(8) is valid even for metallic particles and that the scattering
amplitude in the zero frequency limit corresponds to electric
dipole radiation, provided only that the dc conductivity is
finite.

Before proceeding, we need to consider the consequences of

mean free path limitations for sum rules.
2.4 Limitation of the mean free path
It will again be useful to consider a specific particle, a

sphere. We also define the volumetric attenuation coefficient

a, as the extinction cross section per unit particle volume. It

follows from (8), (16), and (17) that the volumetric attenuation
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coefficient is independent of particle size and depends only on

the low frequency limit of the dielectric function

(\D

J)v dA = 3 fi? Re[i(ﬂ) T3 (19)
We have also transformed the variable of integration from
frequency to wavelength. For a material with dielectric
function (12), the term on “he right side of (19) is
.2 2 _ .2
elw) - 1) _ wP—(3uJ UUL)
Re | = . (20)
g (w) (30?2 - w;)z + 9y2,2
The limit of (20) as the frequency goes to zero is unity,
regardless of the value of y, and in this instance
[a dx = 372. (21)
v

The damping term Y arises from scattering of electrons by
the lattice, electron-~phonon scattering. If it were not for
electron-phonon scattering, the dc conductivity of a metal would
be infinite. 1In a sufficiently small particle, scattering of
electrons by its boundary may be more important than scattering
by the lattice. That is, the mean free path for scattering by
the boundary may be less than that for scattering by a phonon.
This was first pointed out by Doyle (1958), and subsequently .
investigated by Doremus (1964), Kreibig and von Fragstein

(1969), Kreibig (1974), and Grangvist and Hunderi (1977). )

Kreibig (1974) interpreted absorption by small silver particles




by modifying the damping constant in the Drude expression (12).
This damping constant, which is the inverse of the collision
time for conduction electrons, is increased because of
additional collisions with the boundary of the particle. Under

the assumption that the electrons are diffusely reflected at its

boundary, can be written

where Yulk is the bulk metal damping constant, v. is the

F
electron velocity at the Fermi surface, and L is the effective
mean free path for collisions with the boundary. Kreibig took L
to be 4a/3 for a sphere of radius a. We have already shown,
however, that (21) is independent of Y . Thus, we conclude that
the limitation of the electron mean free path by the boundaries
of a small particle do not affect its integrated extinction.
Detailed calculations for spheres (see Bohren and Huffman, 1983,
p. 338) are in accord with this conclusion. When particles are
sufficiently small, the effect of their boundaries is to

decrease peak extinction while simultaneously broadening it in

such a way that integrated extinction remains constant.

3. SUM RULES FOR PARTICLES OF VARIOUS SHAPES

A general result and its interpretation

The scattering amplitude S(0) for any particle that is




sufficiently small compared with the wavlength of the light
illuminating it is proportional to its volume. Thus, it follows
from (8) that integrated extinction per unit volume of any
particle is independent of its size: it depends only on its
composition. When a particle is illuminated by an
electromagnetic wave, various electromagnetic modes may be
excited. The larger the particle, the greater tha number of
such modes. This follows from simple physical reasoning,
although it is also evident from exact solutions to scattering
problems. The smaller the particle, the fewer the modes that
can be excited. Yet integrated extinction is independent of
particle size. That is, a fixed amount of total extinction must
be shared by modes, the number of which increases with
increasing particle size. Thus, the larger the particle, the
more a fixed amount of total extinction has to be shared with an

ever larger number of modes. Hence the extinction associated

with each resonant mode must decrease with increasing size.

This is turn implies that the smallest particles have the
greatest extinction. This is a very general result. It can be
verified in specific instances. For example, the greatest
possible extinction per unit volume of a sphere is obtained for
spheres much smaller than the wavelength. This high volumetric
extinction, however, is concentrated in a narrow spectral band,

as implied by the sum rule.

3.2 Ellipsoidal particles
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Equation (8) is completely general. To apply it to a
definite particle requires the scattering amplitude in the
forward direction in the limit of zero frequency. Consider a
homogeneous ellipsoidal particle of volume v illuminated by
light polarized along one of its principal axes. At
sufficiently low frequencies, this particle is equivalent to a
dipole with (induced) moment

e - 1

p= €V E (23)
e ) 4 L(e - 1) ™0

where gois the incident field, L is a geometrical factor lying
between 0 and 1, and € is the permittivity of the surrounding
medium (assumed to be nonabsorbing). In general, there is a
distinct geometrical factor Lj for each of the three principal
axes of the ellipsoid, the sum of which is unity. 1In general,
the incident light is not polarized along one of the principal
axes, so we have to resolve the incident electric field into its
components along the principal axes of the elliposoid. We
denote these coordinate axes, which are fixed relative to the
particle, by xyz. Axes relative to which the incident light is
specfied (laboratory coordinate system) are denoted by x'y'z'.
If the incident light is polarized along the x' axis, the
scattering amplitude corresponding to (23) is

_ ik? érx(érxg) ,

-~ 4me E
m

(24)
ox"'

where ér is a unit vector in the scattering direction. The
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projection of (24) onto the x' axis in the forward direction is

_ ik .
S(0) = -43 ™1q ¢
" where
4
_ 2 4 2
; t1y T @1y F %8, T 0385y
@ = v e -~ 1 ) (25)

1 + L, -1
J(e )

The quantities a;q etc. are direction cosines between the primed

and unprimed axes, and they satisfy

ata Al w N

A If we combine substitute (25) in (18) we obtain the sum rule

®c . () 3 -
3 I——EEE——— dQ = ™ 1im Imli & a? € 1 ] (26)

Q2 2€ 4o j=1 31 1 + L (e - 1)

b
)
As a check on (26), we note that it reduces to (19) when all the
geometrical factors are equal (i.e., the ellipsoid is a sphere)

and the variable of integration is changed from frequency to

wavelength.
Y A less general, but more useful, form of (26) is obtained )
!
: by averaging over all orientations of the ellipsoid. Unless

special care is taken, a cloud of ellipsoidal particles is ‘
A likely to be randomly oriented, in which instance 3

1
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where the brackets indicate an average over all directions with
equal probability per unit solid angle. The corresponding

volumetric attenuation coefficient satisfies

o]

3
a drx = 7?2 lim Rel| & £ 1 (27)
v w+0 j=1 3 + 3Lj(€ - 1)

o]

whereaV = <Cext>/v' Again, this reduces to (19) when all the

geometrical factors are equal.

Each term in the sum on the right side of (27) has the form
(¢” - 1)(3 + 3L,e” - 3Lj) + 3Lje"2

lim 3
w0 (3 + 3Lje’ - 3Lj)2 + 9L§e"2

(28)

Let us consider the low frequency limit of (28) for two classes
of materials, metals and polar insulators. The Drude dielectric
function (28) applies to an ideal free-electron metal. The
imaginary part of this dielectric function goes to infinity in

the limit of zero frequency. Hence, for an ideal free-electron

metal (27) becomes

fo o]

a di =
v

(29)

wl:%
MW
ﬁrd

173
0

Now consider an insulator, one for which the imaginary part of
the dielectric function goes to zero in the low-frequency limit.

For such a material (28) is

...... R R T A P Y ”(‘.‘-\:‘.‘ B
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lim = -1 (30)

£>0 3 + 3L.e - 3L,
] J

Thus, if

Lj >> lim 1/(e' - 1) (j =1,2,3), (31)

w0

integrated volumetric extinction is still given (approximately)

‘by (29).

All the geometrical factors Lj for a sphere are 1/3. The
low-frequency limit of the dielectric function of water is more
than 80. Thus, we obtain the unexpected result that integrated
extinction by a water droplet is (approximately) that same as
that by an equal-volume metallic sphere. The extinction spectra
of these two particles are markedly different, and yet the
integrals of these spectra are the same. This similarity is not
maintained for all shapes. As the particle shape deviates more
from sphericity, at least one of the geometrical factors Lj must
decrease to the point where (31) is no longer satisfied.
Nevertheless, for a wide range of shapes integrated (volumetric)
extinction by metallic particles is approxmately equal to that
of insulating particles made of a substance with a high
dielectric at low frequencies function (e.g., water in both

liquid and solid phases).

4. SOME THOUGHT ON OPTIMIZING ATTENUATION

The fraction T of electromagnetic radiation transmitted by
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a cloud of particles is a product

T = ? exp(—avjsz) (32)
wherect,Vj is the volumetric attenuation coefficient of the jth
kind of particle, fj is the volume fraction in the cloud (the
subscript j may denote composition, size, shape, or even
orientation), and z is the cloud thickness. Equation (32) is a
lower limit on the cloud transmission; T can be greater because
of multiple scattering. The gquantity sz is the total volume of
particles of the jth kind per unit area of the cloud.
Transmisison can therefore be made arbitrarily low by increasing
the mass of particles, which is effective but not efficient. To

minimize the amount of material, one must maximize and not

vj'
merely over a narrow range of wavelengths. We can rewrite (32)

as

-1nT/fz = £ a T (33)
j

So we want to maximize the sum on the right side of (33). I
argued in the Introduction, that to do this by detailed

calculations would be an endless task, even if all the

analytical tools were at hand (which they are most definitely



not). Nevertheless, one can establish some bounds.

First, we can establish some practical lower bounds. The
extinction cross section of any particle larger than the
wavelength of the light illuminating it is approximately 2G,
regardless of its composition, where G is the geometrical cross
sectional area of the particle projected onto the incident beam.
G is proportional to some characteristic length d of the
particle (for a sphere, its diameter). The volume of the
particle is proportional to the cube of 4. Thus, for such a

particle

a = Cext/v = K/4,
where K is a constant depending on particle shape (K = 3 for a
sphere). Let us take d to be of order 1 um, which gives a, of
order 104 cm'l; if 4 is ten times larger, then o, is
correspondingly less. Thus, d +* 1 um is more or less the
smallest size for which (34) is a good approximation for visible
and near-visible wavelengths. It therefore seems that a
volumetric attenuation coefficient of order 104 cm_l represents
a kind of lower bound: it is the value that can be obtained
without making much of an effort. Wwhat is the upper bound?
According to the sum rule (27) integrated volumetric
attenuation is independent of particle size. I argued in Sec.

3.1 that when a particle is illuminated by an electromagnetic

wave, various electromagnetic modes may be excited. A specific

example of this is provided by a sphere. The extinction cross
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section of a sphere is given by the infinite series

Coxr = (27/k*)Re{I (2n+l)(a_  + b )} (35)
Each coefficient corresponds to an electromagnetic mode of the
sphere; a, correspond to modes of electric type, bn to modes of
magnetic type. The larger the sphere, the more terms in (35)
are needed for satisfactory convergence; that is, the larger the
sphere, the more modes are excited by the incident wave.
According to the sum rule (27), the integrated (volumetric)
extinction is independent of particle size. Thus, the larger
the particle, the more that a fixed amount of total extinction
has to be shared by more modes. Conversely, the smaller the
particle, the fewer the modes, hence the more extinction
associated with each one of them. To make my point, I have
invoked a sphere, but my conclusion is independent of particle
shape.

We therefore must look to small (compared with the
wavelength) particles for the greatest possible extinction per
unit volume. It follows from (27) and (29) that for a given
shape, metallic particles will have the greatest integrated
extinction. Moreover, it is the extreme shapes that gives (29)
its greatest value. For a (perfectly sharp) needle or a
(perfectly flat) disc, L1 = 0, hence for these ideal particles
integrated extinction is infinite.

To estimate the greatest possible volumetric extinction, I

did some simple calculations for very small (compared with the
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wavelengths of ultraviolet light) spheres and randomly oriented
\ discs and needles of aluminum. Aluminum is almost an ideal

free-electron metal; its dielectric function is given to good

approximation by (12). I took the plasma frequency (in electron

volts) to be 15 eV; the damping factor was 0.6 eV. The results

are shown in Fig. 1. Note that the sphere gives the greatest

AT s 2 A

peak extinction. This is not surprising in light of the sum
rules. Fewer modes are excited in a sphere than in an
asymmetric particle such as a needle or a disk. Peak extinction
is about lO7 cm'l. I claim that this is a practical upper
bound. Moreover, this bound cannot be obtained over a wide
range of frequencies. A practical upper bound over at least one
decade from the ultraviolet to the near infrared is 106 cm'l,
and this would have to be obtained with a mixture of particles
having different shapes.

I argued at the beginning of this section that volumetric
extinction of lO4 cm-1 could be obtained with almost no thought.
One could almost select particles at random. With a bit of
thought it is possible to increase this number by a factor of
- 100. A further factor of ten increase might be possible, but
. this would likely be obtained at the expense of high extinction !
o in one spectral region being paid for by much lower extinction

in another.
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Fig. 1 Volumetric extinction by aluminum particles
that are small compared with the wavelengths
of ultraviolet light.
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